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The,absorption of radiation by ballistic electrons in 
conducting discs 
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F-31062, Toulouse cedex. France~ 

Received 8 November 1993, in final form 25 February 1994 

Abstract. The absorption of electromagnetic radiation by small conducting discs is calculated 
for the case of ballistic electron motion, using a semiclassical analysis valid al frequencies small 
compared to the plasma frequency 9. For a smooth walled disc there are complicated resonance 
smctures. and the absorption caefficient has a low-frequency cut-off at a critical frequency wc, 
which comesponds to the frequency of a circumferential classical orbit of an elecmn at the Fermi 
surface. For frequencies a i m i n g  WE << o <<up; the absorption coeficient is proportional to 
w if fluctuations due to resonances are averaged over. We also consider a rough-walled disc 
and some more general shapes: the proportionality t o o  rather than the expected d is a general 

~- 

- feature. 

1. Introduction 

The interaction between electromagnetic radiation and small metallic particles has been 
subject to intensive investigation, both theoretically and experimentally. At low frequencies, 
the dominant effect is absorption rather than scattering. Most theoretical analyses of this 
problem are based upon the Mie theory [l] for the interaction of an electromagnetic wave 
and a dielectric sphere; a metal particle is regarded as having an imaginary dielectric constant 
proportional to its conductivity. The application of the Mie theory is only justified if the 
spherical particle can be regarded as a homogeneous system described by a bulk dielectric 
constant, and its applicability is questionable if the motion of the charge carriers is ballistic, 
i.e. if the bulk mean free path of the charge carriers exceeds the size of the'particle. A 
large part of our motivation for this research wai to advance our understanding of how to 
analyse dissipative phenomena in systems with ballistic electron motion. 

The case of ballistic motion of the charge carriers has usually been treated by replacing 
the tiulk conductivity with an effective conductivity derived from the Drude formula 
(discussed clearly by Ashcroft and Mermin [2]). The relaxation time 5, for scattering 
from impurities is replaced by a bounce time tb - U/UF, where a is the radius and I)F 

the Fermi velocity, which is the typical interval between collisions of the ch&ge, carrier 
with the boundary of the particle. This approach was first introduced by Kawabata and 
Kubo [3], who showed (by comparison with a more precise calculation) that it provides 
qualitatively correct results for absorption above the plasma frequency. In a recent paper 
[4], we examined the applicability of this effective conductivity ansafz at. frequencies below 
the plasma frequency, where screening of the applied electric field is significant' We found 
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that the physics of this situation is complex, with the results depending on the details of 
the shape of the boundary of the particle and on an additional material-dependent parameter 
which does not appear in the effective conductivity approximation. Because of the delicate 
dependence on the shape and composition of the small metal particles predicted by our 
theory, we felt that it would be interesting to examine this problem for a two-dimensional 
system (metal discs). Microfabrication procedures could be used to produce very uniform 
and well characterized samples, whereas spherical particles of well controlled size might 
be very difficult to prepare. This is not a trivial extension of our earlier work, because in 
conlrast to the three dimensional case the screening charge is not confined to the boundary 
of the disc. A very surprising consequence of this difference is that for frequencies o 
which are small compared to the plasma frequency up, but large compared to the bounce 
frequency a, the absorption coefficient y is proportional to U. This is in contrast to the 
y - o2 dependence predicted by the effective conductivity approximation. If the boundary 
of the disc is smooth enough to allow specular reflection of the electrons, there are also 
complicated resonance structures superimposed on the y - o relationship, which we analyse 
in detail. 

Our approach can be summarized as follows. We model the metallic disc as a gas of 
independent fermions with charge e and isotropic effective mass m, confined to a plane 
and trapped inside a circle of radius a by a confining potential, which is infinite outside 
the circle and zero inside it. An independent-particle approximation is used, which is valid 
at high electron densities (which enswes that the Fermi energy is large compared to the 
Coulomb interaction) and at low temperatures (which ensures that scattering interactions 
are suppressed by the lack of empty states below the Fermi energy). Each electron is 
regarded as moving in a self-consistent effective potential which includes the effect of the 
time-dependent externally applied electric field. Because the potential is time dependent, 
the energy of the electrons is not a constant of the motion, and we will compute the mean 
squared change in the energy of the individual electrons resulting from the time dependent 
perturbation. There is a relationship (discussed in section 2) between this quantity and the 
increase of the total energy of the electron gas (which is proportional to the ,absorption 
coefficient). 

Our calculation uses two types of semiclassical approximation, both of which are 
justified if the radius a is large compared to the Fermi wavelength. Firstly, we use the 
Thomas-Fermi method to calculate the effective potential. Secondly, we use a classical, 
rather than a quantum mechanical, method to cajculate the change in the energies of 
the electrons induced by the time-dependent perturbation. Both of these semiclassical 
approximations are discussed in section 2. 

After having discussed the model, in section 3 we present a detailed calculation of the 
absorption coefficient for discs with a smooth boundary. In section 4 we discuss some 
generalizations, indicating the universality of the y - w relationship, and we present an 
analysis of absorption by a rough-walled disc. Section 5 briefly discusses the experimental 
observability of the results. 

M Wilkinson and E J Austin 

2. The semiclassid approach 

We assume that although the conducting disc is small enough for the electron motion to be 
ballistic, it is large enough for a semiclassical analysis to be applicable, in which information 
about the the classical dynamics of the electrons is used instead of quantum states. 
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The electrons are assumed to behave as a set of independent panicles whose dynamics 
is determined by a single-particle effective Hamiltonian of the form 

H = p Z / 2 m  + v ~ ( T )  + V I  (T)  sinwt (2.1) 

where the time-dependent term represents the effect of the externally applied electric field 
of magnitude &(t) = &sinor, which we will assume to be polarized along the x axis, in 
the plane of the disc. The potential V,(T) experienced by an electron due to the applied 
field is not simply e€ox  because of the screening effect of the other electrons, which we 
will consider  in^ due course. One approach to analysing the effect of the time-dependent 
perturbation would be to calculate the eigenfunctions and eigenvalues of (2.1) at t = 0, and 
to apply time dependent perturbation theory; this would be a difficult calculation, because of 
the necessity to calculate matrix elements of the perturbation. Under suitable conditions it 
is possible to simplify the calculation by making use of the correspondence principle. This 
is justified when two conditions are satisfied: firstly, the scale SiZE of the fluctuations of the 
potential energy should be iarge compared with the de Broglie wavelength, and secondly the 
typical spacing of the energy levels should be sufficiently small that they can be regarded 
as a quasi-continuum. Both of these conditions are satisfied for a sufficiently large disc. 

The change AE(r)  in the energy of a single electron at time r will therefore be calculated 
classically: 

- 

A E ( t )  = dt‘ - = dt’ V~(~(t’))cosof’ (2.2) .I‘ :: I‘ 
where ~ ( t )  is the classical trajectory of fie electron. 

electron gas due to the action of the perturbation: 
In [4] we obtained a semiclassical formula for the total energy absorbed AET(f )  by the 

A&@) = h-2n(Ep)(AE2(EF)) (2.3) 

where (AEZ(EF)) is the second moment of the changes in energy AE(f) experienced by 
individual electrons in the neighbourhood of the Fermi energy, and Q(E) is the weight of 
the energy shell at energy E: 

n ( E ) , = S d r S d p S ( E - H o ( r , p ) ) . ~  (2.4) 

The quantity h-%(EF) is the density of states n(E) per unit area per spin at the Fermi 
energy multiplied by the area of the particle. For a disc of radius a ,  this is 

h%(EF) = zaZn(EF) = maz/2hz. (2.5) 

The calculations performed in [4] and here show that AET depends linearly on time, apart 
from unimportant periodic fluctuations, so the average value of dET/dt is a constant. The 
absorption coefficient y (0) is clearly proportional to the time-averaged energy absorption 
(dET/dt) in a single particle. We envisage that the most probable application of these 
results would be to a layer of discs on a surface. Because there is no standardized definition 
of y ( w )  for this geometry, we will only quote results for the rate of absorption of energy 
by a single disc. 
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Before applying equations (2.2x2.5) we must develop a theory for the effective 
potential V l ( r )  due to the externally applied electric field. For this we will use the Thomas- 
Fermi approximation 121. in which it is assumed that the effective potential & (?-) (assumed 
small) varies slowly on the length scale of the Fermi wavelength (the validity of this 
assumption will be discussed in more detail later). The small perturbation VI(?-) of the 
effective potential causes a change in the density of electrons 8n(r) 

where N ( E F )  is the integrated density of electrons for a free electron gas with Fermi energy 
EF, including spin: 

N(EF)  = mEF/itR2. (2.7) 

The change 8n(r) in the density of the electron gas results in a corresponding change 
6q = e8n in the charge density. If the disc is sufficiently large, we can assume that 
the change 6q(r) in the charge density is that which would be predicted by classical 
electrostatics. Because we are only interested in frequencies w which are small compared 
to the plasma frequency, we can assume that 64 is the same as for a conducting disc in a 
static electric field: this is [5] 

(2.8) 

where (r, 0) are plane polar coordinates and the electric field is taken to be along the x 
direction. Note that, in contrast to the conducting sphere, the charge density extends inside 
the disc rather than being confined to a thin layer at the boundary. This justifies the use of 
the nomas-Fermi approximation, everywhere except at the edge. Combining (2.5)-(2.7), 
we obtain 

4co&h2 rcos9 
VI(?-) = - 

me m' 
This potential has a divergence at the edge of the disc. The simple Thomas-Fermi approach 
would break down here, hecause the potential is not slowly varying, but this approximation 
is expected to be adequate throughout the interior of the disc. The divergence is integrable, 
in the sense that the energy AE( t ) ,  computed from (2.3, will remain finite (except for 
the special case of the trajectory around the circumference of the disc). The corrections to 
(2.9) near r = a need not therefore be considered. This completes our description of the 
semiclassical approximations involved. 

3. Calculation of the rate of absorption 

To calculate the rate of absorption of energy we use (2.2) and (2.9) to calculate the second 
moment of the change in the singleparticle energies, and then apply (2.3). 

For the unperturbed classical motion the total energy E and the angular momentum J 
are constants of the motion. Figure 1 illustrates a typical trajectory. The polar angle 9 is 
incremented by an amount 2c$ between bounces. The angle c$ is related to J by 

(3.1) J = m a w  cos 4 
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P i p  1. Ulustmtion of a classical mjecrory'for a particle bouncing inside a smooth disc and 
the definition of the angles c$ and 00. 

and the corresponding time between bounces t is 

t = (k/uF)sin@. (3.2) 

Simple geome'ay shows that the radial coordinate r is a periodic function of time with 
period 5: - 

a (3.3) 

where t is measured from the most recent bounce. The polar angle 0 has the time dependence 

(3.4) 

where So is the polar angle of the previous bounce. It is useful to separate the motion in 
the 6 direction into a secular component and a periodic component: 

e'@) = e(t)  -eo - z@t/t .  (3.5) 

where O'(t )  is periodic with period t, and 00 is the polar angle of the initial bounce. Using 
(2.2) and (2.9), an expression for A E  can be obtained 

This expression is not directly tractable analytically but can be expanded as a Fourier series. 
Substituting for 0 from (3.5) gives . .  
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with C = 4Ta20co&o/me. The parts of the integrands which are periodic with period r can 
now be written as Fourier series: 

r(t)cose'(t) - 2 
, / m j  - n=-m 

,/- n=-m 

a&) exp(bint / r )  

r( t )  sin e'(t) 
= 2 bn(4)exp(&int/r). 

Using the expressions (3.3) and (3.4) allows a. and b. to be obtained as 

a.@) = ~ 6 1 d T [ ~ c o s ( ~ T ) + \ / - - T c o s [ 2 6 ( 1  1 - T  -T)] 
I - T  

= 1 dT&cos(Zq5T)cos(2nnT) 1 - T  =a-"(+) 

(3.9) 
s1nO 0 

b.(@) = 2sin@ 1' d T [ - E s i n ( 2 @ T )  + F s i n [ Z @ ( l  I - T  - T)] 1 e-2rrinr 

= -!-- J'dT\r--i--sm(Z@T) I - T .  sin(2nnT) = -kn(@) sin4 
where T is the scaled variable t/r. These coefficients can be obtained numerically and 
can also be formally expressed in terms of confluent hypergeometric functions [6, 71. After 
some algebra, the integral (3.7) can be obtained as 

Cr - expi(24tlr +ot + Znnt/r) - 1 
4 i(2@ + or + 2zn)  

A E  = - 2 [r.(@)e'$[ 
n=-m 

1 
I1 

exp i(Z@t/r - ot + 2nnt/r) - 1 
i(Z@ -or  + 2 m )  + 

+ dn(4)e-ieo [ 
+ 

exp i(-24t/t t a t  + Zznt/r) - 1 
i(-@ +or + Znn) 

exp i(-Z@/r - at + 2?rnt/r) - 1 
i(-W - or + 2 m )  (3.10) 

where the real coefficients ~" (4 )  and &(4) are defined by c.($J) = un(4)+ibn(4), dn($) = 
a.(@) - ibn(@). By grouping complex conjugate pairs of terms and using the symmetry 
properties of a,, and bn, (3.10) can be expressed in a more convenient form involving 
summing over positive values of n only: 

Ctco($J) cos00 &(at t 2$t/r)  + sin&(cos(wt + 2@t/r) - 1) 
(05 + 24) 

cos 00 sin(-wt + Wt/r)  + sineo(cos(-ot + W t / r )  - 1) 

A E  = 

(-or + 24) 1 
2 [ 

+ 

+sin 80(cos(bnt/r + 24t/s for) - l)]  

- sin&(cos(Zrrnt/r - Z&/r i ut) - I)] (3.11) 
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where terms with both signs are included in the sum. Equation (3.1 1) has resonances at 
values of 4 for which the denominators vanish. The analysis given below shows that 
these resonances do not overlap, so that in the neighbourhood of a resonance a~valid 
approximation to AE is obtained by retaining only a single resonant term. The average of 
AE2 is dominated by contributions from the resonances, and because only one of the terms 
is large at any one value of 4, this average will be approximated by sum of the squares of 
the individual terms of (3.1 1 ) ;  cross terms will be neglected. It is convenient to average the 
squared terms over the initial angle 00. This gives 

sin' f ( 2 @ t / r  + ot) 
(or + 24)' 

sin' i ( 2 @ t / r  -ox) 
(-or + 2@)' 

{AE'), Y - + 

(3.12) 

where { )e, denotes an average over 00. The expression (3.12) explicitly shows the resonance 
properties referred to above. When there is a resonance between the field frequency and 
the classical motion of the electrons, one of the denominators in this expression becomes 
small. The resonance conditions are 

2@+or=&2kn 2 & ; * - o r = f 2 k n  ' k = 0 , 1 ,  .... . (3.13) 

Similar resonances also occur in the case of ballistic electrons in a sphere, discussed in [4] .  
The interpretation of these resonances is discussed in more detail below. 

To obtain the value of (AE'(t))  is necessary to perform the phase space average 

Jd01 AE'S(E - EF) 
{AE') = 

I d a  S(E - EF) (3.14) 

where the 01 are the phase space coordinates. A suitable canonical set of coordinates for this 
calculation is ( E ,  J ,  to, eo), where to is the initial time coordinate of the particle, measured 
from the previous bounce. The relation between ( x ,  y ,  p x ,  py) and (to, 00) is 

'x-p,to/m=acosBo y-pyto/m,=asinBo. (3.15) 

The average over 00 has already been performed in (3.12). The denominator of (3.14) can 
readily be ,evaluated by converting the integral over J to an integral over 4. giving 

where the range of 4 is set to account for positive and negative values of J. Performing 
the intend with respect to to and substituting for r gives the numerator as 

' 

(3.17) 
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The evaluation of (3.17) can be illustrated by considering the first term, 

M Wikinron and E JAustin 

By substituting y = (+t/r + ot/2),  the integral for this term can be obtained as 

c,"(@) sin4 + sin2 y - 

(3.18) 

(3.19) 

Taking the slowly varying parts oulside the integral allows the integral over y to be 
performed giving the value r. Repeating the same procedure for the remaining terms 
and combining with (3.16) and (3.17) gives 

(3.20) 

with 

where the @:,@;* are the allowed solutions of (3.11); the second equality follows from 
(3.13) and (3.2). Using (2.3) (dET/dt) can be obtained as 

m + C(C.(@" 2 +* ) +&(@" 2 +* ))f+(@?) + (4(@T*) +d;(@;*))f-(+;*)]. 
"=I 

(3.22) 

The sum in (3.22) is taken over all possible solutions of (3.13) at frequency U. 

Figure 2(a) shows numerical results obtained for the lowest six resonance bands of 
(3.21); both the individual bands and the total absorption coefficient are displayed. Figure 
2(b) shows the absorption coefficient obtained from the first 50 bands. Below the frequency 

= uF/a there is no absorption. The onset of the lowest band corresponds to synchrotron 
acceleration of an electron in a circumferential orbit with @ = 0; this band has a @-I 

divergence at the lower edge, corresponding to a (o - w,) - ' /~  divergence in the absorption 
coefficient. The lowest band has a finite upper cut-off at + = n/2, which corresponds to 
the electron bouncing along the diameter of  the disc. The remaining bands have onset at 
+ = n/Z and no upper cut-off. The divergence of the lowest band is associated with the 
singularity of the potential (2.9) at the edge of the particle and would be smoothed out in 
a more realistic model. 

At high frequency it can be seen that both the resonance peak heights and the smoothed 
absorption coefficient are proportional to the frequency. This behaviour can be obtained 
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Figure Z Absorption mefficient as a function of frequency: (a) Krst six bands. with the 
individual bands included, (b) first 50 bands. ?%e units of absorption ccefficient correspond to 
the pre-multiplier in (3.22) being set to 02, 

directly from the asymptotic forms of the coefficients a,, and b, in (3.9). For a,, the change 
of variable T' = 2nnT gives 

1 - T ' j k n  .. (E') 
COST' 1 

COS - COST' 4F a, sin4 = - ikn dT" 
G o  

dT'-- -- 
S O  JT; 24% 

(3.23) 

from the relation of the integral obtained to a Fresnel integral [7]. A similar argument forb, 
shows that b. + 0 as n + CO. At large values of the resonance index n, n is proportlonal 
to w so that each new resonance contributing to (3.22) in this limit gives a contribution 
proportional to w as observed. It is possible to use the asymptotic expression obtained 
above to estimate the average slope of the absorption coefficient versus frequency plot; 
this quantitiiy is relevant to experiments which might not resolve the resonance structures. 
Using (3.23) the asymptotic form of (3.22) is 
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(%) = iDw2(I+ + I-)  

with D = 4a’f iZc~Ei /me2v~ and 

Using the resonance condition nrr = (oa/uF) sin @ T @ gives 

where the approximation is the large-o limit, and hence 

%a2fiZc,Z&& 
me2 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

This average high-frequency absorption is shown in figure 2(b). Using (3.23) it is also 
possible to derive the result that the onset of each pair of resonances gives a spike of height 
twice the average value. 

4. Generalization to other shapes 

A surprising feature of the calculation presented above is that the absorption coefficient 
is proportional to 0 in the high-frequency limit. A naTve argument would suggest that, 
because the dipole induced by the field is independent of frequency in the low-frequency 
limit, the current is proportional to W .  If the disc could he characterized by a frequency- 
independent resistance, this would imply that the energy dissipated is proportional to oz. 
In this section we will look at the explanation for the 0 frequency dependence from a more 
physical viewpoint. It will be shown that this dependence is a general characteristic of 
two-dimensional particles, and that it stems from a universal form for the divergence of the 
charge density at the edge of a particle. 

We first consider the form of the charge density near the boundary. The electrostatic 
potential U is constant on the surface of the particle. We consider a system of local Cartesian 
coordinates in the neighbourhood of the edge of the particle, such that the conducting region 
is the plane y = 0 ,x  > 0. The potential is independent of the thiid coordinate in the 
neighbourhood of the edge, i.e. U = u(x.  y), and without loss of generality we can set 
u(x,  0) = 0 for x > 0. Because U i s  dependent only on x and y. we can write z = x + iy, 
and use the fact that if w = U + iu  = f ( z ) ,  where f ( z )  is an analytic function, then both 
u ( x ,  y )  and u(x. y )  satisfy Laplace’s equation, @U = 0. In this context the correct function 
is f (z)  = z1l2, which gives the following relationships between U ,  U and n. y: 

x = u ~ - u  y = 2 u u  (4.1) 

which can be solved for u(x .  y). The potential u(x ,  y) given in parametric form by (4.1) has 
the property that the equipotentials are folded around the line y = 0, x > 0, and converge 
toward this line in the limit U -+ 0. The potential in the neighbourhood of a straight edge 
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of a conducting plate will always converge to a multiple of u(x, y). The charge density on 
the plate is proportional to the discontinuity of au/ay at the plate.. From (4.1). we find 

and that in the limit U + 0, U - [ y [ / f i ,  so that 

- (4.3) 

The charge density in the neighbourhood of the edge of a smooth plate can therefore be 
written in the f a n  

S q W  - C(S)/& (4.4) 

where s measures the distance around the circumference, < measures the distance from the 
nearest point on the boundary, and C(s) is.a function which must be obtained from the 
global solution of the electrostatic problem. We note, for later reference that for a disc the 
function C(s) is 

where s = ae. 
When the frequency w is large compared to the characteristic frequency of collisions 

with the boundary w,, we will show that the changes in the energy of the electron occur in 
the neighbourhood of the collisions with the boundary. In this case the limited information 
about the charge distribution contained in (4.4) is sufficient to determine the response of 
the system. Consider the change in the energy of an electron which strikes the boundary 
attime t = tb, between t = t b  - At and t = tb + At, where At  is small enough to ensure 
that there are no other collisions with the boundary. Assume that the electron strikes the 
boundary with angle of incidence 6. Using (2.2), (2.6) and (4.4), the change in the energy 
of the electron is 

The distance from the boundary is e(t) = U& 

transferred is therefore 
sin@ In the limit #to >> 1, the energy 

COSOt nfi2”/2 
SE = di- =. c($) I cos& (4.7) me= 

where 

0 0 1  
dr-cosx = 6, 

I = L ,  IfiI (4.8) 

The total energy transferred in time t is the sum of contributions from individual bounces 
of the form (4.7). Because (4.7) contains the factor w1/2, the absorption coefficient obtained 
from (2.3) will always be proportional to w when w, << w << wp. 
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We illushate the application of (4.7) by rederiving (3.27). From (4.7), the total energy 
change experienced by an electron with angular momentum J in time i is 

where tj and 8j are the times and polar angles of the N = ( t j z )  collisions with the walls. 
The sum in (4.9) should be evaluated as a geometric series, leading to the same type of 
sum over resonances as was treated in section 3. We will adopt a simpler procedure, and 
treat the sum as if the terms were uncorrelated. In appendix B of reference [4], we show 
that this procedure is justified in the high frequency limit, where the resonances are dense. 
We therefore write 

(4.10) 

In order to use (2.3) we require the phase space average of AEZ( t ) .  It is convenient to 
use the canonical coordinates E ,  to, J ,  00 discussed in section 3: (4.10) is already averaged 
over 80, and averaging (sin-' 4) over to and J gives 

( A E 2 ( t ) )  = 4~R~&;of /m~e~ .  (4.11) 

Finally, using (2.5) and (2.3), the rate of absorption is 

(4.12) 

which is in agreement with (3.27). 
It is also possible to perform a similar calculation for a disc with ergodic motion. For 

this calculation we assume that the charge density is the same as for a smooth-walled disc 
but that surface roughness causes angular momentum conservation to break down so that 
the collision angle 4 is different for each bounce. Repeating the above calculation with this 
assumption gives 

(4.13) 

where the tj are the bounce times and N is the number of bounces, tuF/ (d )  with (d) the 
average distance between bounces. This involves averaging d = 2asin@. Using the phase 
space coordinates ( E ,  3, to, 00) as before gives the average over q5 as 

Similarly, 

(4.14) 

(4.15) 
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Combining these results gives 

(AEZ(t)) = 3irR4e,2E,2w/me2 

and 

(4.16) 

(4.17) 

This result is very similar numerically to that for the average (dET/dt) for a smooth disc; 
unlike the smooth disc there are no resonances. It may appear surprising that this result 
does not depend upon the nature of the ergodic motion. This is related to the assumption 
that the frequency is much higher than the bounce frequency: the rapidly oscillating term 
cos wtj in (4.9) makes successive bounces against the boundary appear to be uncorrelated. 

5. Concluding remarks 

Our results indicate that for frequencies w satisfying w >> w, = uF/a and w << up, the 
absorption coefficient of a two-dimensional conducting particle with ballistic electrons is 
proportional to frequency. This conclusion depends on the electron motion being ballistic, 
but it is not dependent on the shape of the particle or on whether reflections at the boundary 
are specular. This is a surprising conclusion because it is at variance with the prediction of 
the Kawabata-Kubo msatz, which predicts an wz dependence. 

We also gave a detailed analysis of the semiclassical model for a disc with a smooth, 
specularly reflecting boundary. In this case we found that the response is determined by 
resonances between the classical motion and the applied field. There is a low-frequency 
cut-off at the synchrotron frequency o, = uF/a. The first resonance, at w,, corresponds to a 
synchrotron acceleration of the electrons in a circumferential orbit. This resonance diverges 
in the simple Thomas-Fermi approximation because of the divergence of the effective 
potential on~the boundary, which would be removed in a more sophisticated theory. The 
other resonances do not diverge and in the limit w >> w, they overlap and sum to an average 
o dependence. 

These resonance effects are dependent on the particles being quite precisely circular 
in shape, and upon the .reflections of electrons at the boundary being specular. This may 
be experimentally realizable in conducting discs prepared by lithography of semiconductor 
systems in which a two-dimensional electron gas is confined to a surface layer. Because 
the density of charge carriers is low in semiconductors, the Fermi energy is small and the 
Fermi wavelength is correspondingly large. If the Fermi wavelength is large compared with 
the scale size of the irregularities of the boundary, reflections will be specular. At least 
one experiment has been done involving transport in a laterally structured two dimensional 
electron gas which can only be explained convincingly by assuming ballistic motion of 
independent carriers with specular reflections at the boundaries [SI. 
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